

Chamil EC Q Planet

Ciment multi-usage pour bétons courants

Ciment Portland

Composé au Calcaire & Pouzzolane NA17092 CEM II/C-M (P-L) 32.5 R

Chamil Ecoplanet

Ciment gris pour bétons courants et tous travaux de maçonnerie, destiné à la construction de votre maison.

Chamil Ecoplanet est certifié, conforme à la norme algérienne (NA17092) et européénne (EN 197-5).

AVANTAGES PRODUIT:

- Un ciment "tout en un" pour construire votre maison, permet de réaliser toutes les étapes de construction.
- Un bon comportement pour les travaux de maçonnerie, dressage et talochage.
- Un temps de prise étudié pour un usage confortable.
- Un ingrédient idéal pour la composition des mortiers de finition.

APPLICATIONS RECOMANDÉES:

FORMULATION CONSEILLÉE:

Dosage pour béton

Mortier de briquetage

Mortier de finition

AND DESCRIPTION OF THE PERSON	Propriétés physiques	Valeur
11 ± 0 1	Consistance Normale (%)	27 ± 02
2,4 ± 0,5	Finesse suivant la métode de Blaine (cm²/g) (NA231)	4800 - 5500
4 ± 0,5	Retrait à 28 jours (µm/m)	< 1 000
0.03-0.05	Expansion (mm)	< 10
	Composition minéralogique du Clinker (Bogue)
170 ± 20	C3S (%)	68 ± 01
250 ± 50	C3A (%)	7,6 ± 0,4
≥ 10	28 jours (MPa)	≥ 32.5
	2,4 ± 0,5 4 ± 0,5 0.03-0.05 170 ± 20 250 ± 50	2,4 ± 0,5 Finesse suivant la métode de Blaine (cm²/g) (NA231) 4 ± 0,5 Retrait à 28 jours (µm/m) 0.03-0.05 Expansion (mm) Composition minéralogique du Clinker (Bogue 170 ± 20 C3S (%) 250 ± 50 C3A (%)

CONSIGNES DE SÉCURITÉ:

Protégez votre peau

Portez les équipements adaptés dans vos chantiers (Casques, masques, lunettes, gants, genouillères, chaussures et vêtements de sécurité.

Levez le sac en pliant les genoux et en gardant le dos droit.

